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Abstract—This paper addresses the increasing demand for
advanced electric motor testing, driven by the surge in Electric
Vehicles (EVs) and the need for sustainable transportation
solutions. Conventional testing methods for electric motors are
often costly and time-intensive. To overcome these limitations, this
research introduces a novel, reprogrammable FPGA-based model
of a 3-phase induction motor, focusing on real-time motor testing
using the Hardware-in-the-Loop (HIL) technique. The induction
motor model is coded in Very High-Level Hardware Descriptive
Language (VHDL) using AMD Xilinx Vivado software. This
approach improves cost-effectiveness, efficiency, and performance
in hardware testing. The methodology involves the development
of lookup tables, generated using Python, to represent the
motor’s three-phase input voltage, stator magnetomotive force
(MMF), and rotor characteristics (torque, speed, current). These
components are then implemented as synthesisable VHDL entities
on an FPGA. Power analysis and simulation results for each
module are presented. This work establishes a foundational
framework for simulating induction motors on FPGAs, offering a
significant step towards more advanced and cost-efficient testing
environments, particularly for EV motor design and development

Index Terms—Hardware-in-the-Loop, FPGA-in-the-loop, In-
duction Motor, VHDL, Python, VS Code, TerosHDL and AMD
Xilinx Vivado.

I. INTRODUCTION

The demand for Electric Vehicles (EVs) has surged in recent
years due to increasing environmental concerns, technological
advancements, and the growing need for sustainable trans-
portation. According to the European Union, the transport
sector contributes approximately 28% of total carbon dioxide
emissions [1]. In the process, electric vehicles have emerged as
a viable solution to mitigate these emissions while addressing
the ongoing energy crisis.

Despite being considered an emerging technology today,
electric vehicles have a historical legacy dating back to the
late 19th century, with early models developed by pioneers
such as Thomas Parker and Ferdinand Porsche. During the
1920s, Electric vehicles constituted nearly 28% of the United
States automotive market [2]. However, the rapid evolution
and affordability of internal combustion engine vehicles led to
a significant decline in the adoption of electric vehicles.

In recent decades, the electric vehicle market has experi-
enced a resurgence, driven by progress in battery technology,

increased environmental awareness, and supportive govern-
ment policies. Contemporary electric vehicles are generally
classified as battery electric vehicles (BEVs), hybrid electric
vehicles (HEVs), and fuel cell electric vehicles (FCEVs),
each comprising key components such as an electric motor,
battery, control unit and charger [3]. With the accelerated
adoption of electric vehicles, the demand for comprehensive
testing of diverse electric motor technologies, each exhibiting
distinct characteristics in terms of efficiency, torque output,
and scalability has increased significantly.

Conventional testing methods that rely on physical pro-
totypes are costly and time-intensive. To overcome these
limitations, the integration of Hardware-in-the-Loop (HIL)
simulation and Field-Programmable Gate Array (FPGA)-based
modeling presents a robust alternative. HIL facilitates real-
time testing of motor control systems without necessitating
physical hardware, while FPGAs offer high-speed, reconfig-
urable emulation of different motor types. This integrated
approach significantly reduces R&D expenditure, accelerates
development cycles, and provides a scalable framework to
optimise electric motor performance in EV applications.

II. ELECTRICAL MACHINES.

Electric Motor is the device that converts electrical energy
into mechanical energy by using electromagnetic phenomena.
Most electrical machines develop their mechanical torque by
interacting with current carrying conductors in a direction at
right angles to a magnetic field [4]. The first motor was discov-
ered in 1740, which was Electrostatic device which worked by
using Electrostatic force, by a Scottish Monk Andrew Gordon
and an American experimenter Benjamin Franklin [5]. Electric
drive technologies have rapidly evolved in last few decades.
The three main machines are DC motor, Induction and Syn-
chronous machine. With intense research, other variations of
electric machines now existed like Brushless motor, Permanent
magnet machines etc. With advancements in micro-controllers,
different motor control technologies are available depending
on the user’s need [6].

A. DC Motor.

DC (Direct current) motor has been widely used in many
applications, electric vehicles (EV’s), robotics, steel rolling



mills, etc. The operation is based on interaction between mag-
netic field produced by stationary and rotating components.
The electrical current flows through the armature winding
that creates magnetic field, then interacts with the magnetic
field produced by stator. This interaction generate mechanical
torque that causes the rotor to rotate. They have a precise
speed control. It works on DC power supply. They have
a high starting torque, which makes them suitable for the
application which required high starting torque. They are
high maintenance because of more parts. DC motor provides
excellent speed control for acceleration and de-acceleration.
There are several controllers like, PI (Proportional Integral),
PID (Proportional Integral Derivative), FLC (Fuzzy Logic
Controller). The excitation state is responsible to energise the
field winding which creates the magnetic field necessary for
motor operation. There are three such state, Separately excited,
Series excited and shunt excited [7].

B. Permanent Magnet DC Motor.

It is a type of DC motor that requires a permanent magnet
to create the magnetic field required for the operation of the
DC motor. They are commonly used as a starter motor in
automobile, windshield wiper etc. The working principle of
the PMDC motor is similar to that of the general DC motor,
that is, when a current-carrying conductor enters the magnet
field, the conductor experiences the mechanical force and the
direction of this force is governed by Fleming’s left-hand
rule. In PMDC, the armature is placed inside the magnetic
field of a permanent magnet, and the armature rotates in
the direction of the force generated. Each conductor of the
armature experiences a force and the integration of all these
forces produces a torque that tends to rotate the armature [8].

C. Brushless DC Motor.

The brushless DC motor (BLDC) is a major advancement
in electric motor technology, offering improved efficiency and
reliability by eliminating brushes and commutators. It uses
electronic commutation, reducing maintenance, and ensuring
smoother operation. The rotor’s equipped with permanent
magnets that interact with the stator’s magnetic field to gener-
ate rotational motion, making them highly efficient compared
to traditional brushed motors. Similarly, Permanent Mag-
net Synchronous Motor (PMSM) utilise permanent magnets
embedded in the rotor, eliminating the need for excitation
current. When a three-phase power supply is applied, the
stator generates a revolving magnetic field that synchronises
with the rotor’s magnetic field, enabling precise control of
speed and torque. PMSMs are known for their high efficiency,
reduced power consumption, and ability to deliver high torque
across a wide range of operating speeds. Variable Frequency
Drives (VFDs) allow smooth speed control by adjusting the
timing and amplitude of the stator’s magnetic field, optimising
performance for specific applications. BLDC and PMSM
motors are critical advancements in electric motor technology,
offering superior efficiency and reliability. Their applications

span electric vehicles and industrial automation, driving inno-
vation and sustainability by providing precise control, reduced
maintenance, and improved overall performance [9].

D. Induction Motor

The induction motor, often referred to as the asynchronous
motor, is widely used in electric vehicles (EVs) and hybrid
electric vehicles (HEVs) due to its reliable performance and
efficient energy conversion. It operates on the principle of
electromagnetic induction, where electrical energy is converted
into mechanical energy without any direct electrical connec-
tion to the rotor. Designed by Nikola Tesla, the induction
motor is capable of quickly reaching the desired speed while
maintaining energy efficiency and ensuring safe current levels.
Induction motors are typically classified into single-phase and
three-phase types. Single-phase motors are more common in
residential applications, and three-phase motors are predom-
inantly used in the commercial and industrial sectors. The
motor consists of two main components: the stator and the
rotor. The stator, which contains coiled windings, generates a
magnetic field when alternating current (AC) is applied. This
magnetic field induces motion in the rotor, which is usually
made from laminated iron cores to reduce eddy current losses.
In three-phase motors, the stator windings are configured
in star or delta arrangements, and a rotating magnetic field
(RMF) is generated by a 120-degree phase-shifted three-phase
AC voltage. This interaction between the magnetic field of a
stator and the rotor creates torque, causing the rotor to rotate.
Induction motors are also classified by their rotor design into
squirrel cage and wound rotor types. The squirrel cage rotor
is the most commonly used and is simple, robust, and low
maintenance. The wound rotor, on the other hand, allows for
external control of speed and torque. The air gap between the
stator and rotor impacts motor performance, with a smaller gap
enhancing efficiency but increasing friction, while a larger gap
reduces friction but weakens the magnetic field. In general,
the precision, durability, and efficiency of the induction motor
make it an essential component in electric vehicles and HEVs
[10].

III. ELECTRIC MOTOR SELECTION.

As per the above review, The Induction motor is widely used
electrical machines in the industry due to their robustness,
reliability, and simplicity. They operate on the principle of
electromagnetic induction, where a rotating magnetic field in
the stator induces currents in the rotor, generating torque and
causing the rotor to rotate. The stator has three phase windings,
typically supplied with three-phase AC voltage. When AC
voltage is applied to the stator windings, it produces alternating
currents that vary sinusoidally over time. These alternating
currents create a rotating magnetic field around each stator
winding, which combines to form a rotating magnetic field
in the air gap between the stator and rotor [11]. Induction
motors operate by creating a rotating magnetic field in the
stator, which induces currents in the rotor, generating torque
that drives the rotor. They are commonly used in industrial



applications like pumps, fans, compressors, and machine tools,
due to their simplicity, low maintenance, and rugged con-
struction. However, induction motors have limitations in speed
control and may suffer from reduced efficiency at low speeds.
DC motors, which use direct current (DC), are available in
brushed and brushless configurations. Brushed DC motors rely
on brushes and a commutator to reverse current direction in the
rotor, while brushless DC motors use electronic commutation
for better reliability. DC motors provide precise speed control
and high starting torque, making them suitable for appli-
cations requiring variable speed operation, such as robotics
and electric vehicles. Brushed DC motors require periodic
brush maintenance, whereas brushless DC motors offer higher
efficiency but demand more complex control systems. Syn-
chronous motors rotate at a constant speed synchronized with
the AC power supply frequency, ensuring precise speed control
[12]. Synchronous motors, including synchronous reluctance
motors and permanent magnet synchronous motors (PMSM),
offer high efficiency, power factor correction, and precise
speed control, making them ideal for applications that require
stable operation. Synchronous reluctance motors utilize a rotor
with salient poles, known for their simplicity and robustness.
PMSMs, which incorporate permanent magnets in the rotor,
provide higher efficiency and power density. These motors
are commonly used in industrial pumps, compressors, fans,
and HVAC systems. However, synchronous motors tend to
be more expensive than induction motors and may require
external means of starting, limiting their applicability in certain
situations. Induction motors, on the other hand, are known for
their simplicity, reliability, and low maintenance. While they
lack the precise speed control capabilities of synchronous or
DC motors, they are widely used in industrial applications
due to their rugged construction and cost-effectiveness. Factors
like efficiency, torque characteristics, and maintenance require-
ments determine the selection between these motor types [13].

IV. HARDWARE VERIFICATION AND INTEGRATION

The evolution of hardware testing has paralleled advance-
ments in electrical machine development, transitioning from
traditional methods to modern simulation-driven approaches.
Historically, testing relied on manufacturing physical proto-
types, such as induction machines, which involved substantial
costs and the use of actual materials. Failures or design mod-
ifications required significant time and resources, making the
process inefficient and labour-intensive. Modern hardware test-
ing technology mitigates these challenges through advanced
simulation and virtual testing. This approach enables engineers
to simulate and analyse hardware designs in a virtual environ-
ment, facilitating rapid iteration and refinement before physical
implementation. By identifying and addressing potential issues
during the design phase, engineers can reduce errors, delays,
and costs associated with physical prototyping. Hardware
testing technology enhances flexibility in the development
process. Unlike traditional methods that require extensive
rework for design changes, virtual simulations allow for quick
and seamless adjustments. Engineers can efficiently explore

alternative configurations, iterate on designs, and optimize
performance parameters without the constraints of physical
prototypes. This innovation also enables engineers to test a
broader range of design possibilities and real-world scenarios.
Advanced simulation tools and modelling techniques facilitate
assessments of performance under varying operational condi-
tions, such as different loads and environmental factors. By
analysing the impact of design choices on system behaviour,
engineers can optimize designs for maximum efficiency and
reliability. Hardware testing technology empowers engineers to
evaluate diverse configurations, streamline the design process,
and improve product quality. With comprehensive simulation
tools, they can explore real-world conditions and optimize de-
signs to achieve superior performance, reducing development
time and cost significantly while ensuring enhanced reliability
and system efficiency [14].

A. Hardware-in-the-Loop (HIL).

Hardware-in-the-loop (HIL) simulation is a vital technique
which is utilised in the development of complex systems
across various industries, including aerospace, maritime, and
electrical engineering. This method involves the integration
of real hardware components, such as controllers, sensors,
and actuators, with a computer-based simulated environment.
The simulated environment replicates real-world conditions,
allowing engineers to visualise and analyse system behaviour
in real-time. In HIL simulation, the actual hardware under test
is connected to the simulation environment via interfaces such
as analogue and digital I/O or other protocols. This connection
forms a closed loop, enabling seamless interaction between
the hardware components and the simulated environment. By
incorporating real hardware into the simulation, engineers can
assess system performance under realistic operating conditions
and validate the functionality of complex systems [15]. The
significance of HIL simulation lies in its ability to mitigate
risks associated with testing real hardware in a live environ-
ment. Given the high stakes involved, particularly in industries
where hardware components are valued at millions or even
billions of dollars, the potential for errors during testing poses
significant challenges. HIL simulation offers a controlled and
safe environment for testing, allowing engineers to identify
and rectify potential issues before deploying hardware in real-
world applications. By applying HIL simulation, engineers can
optimise system performance, ensure reliability, and reduce
development time and costs. This approach enhance efficiency
and minimises the likelihood of costly errors or failures during
system deployment. Ultimately, HIL simulation plays a crucial
role in ensuring the success of complex engineering projects
by enabling thorough testing and validation of hardware sys-
tems in a controlled environment [16].

B. FPGA-in-the-Loop (FIL).

Like Hardware-in-the-loop (HIL) testing, Field-
Programmable Gate Array-in-the-loop (FPGA-in-the-loop)
testing involves integrating Field-Programmable Gate Arrays
(FPGAs) into the testing and validation process. FPGAs



are semiconductor devices that can be re-programmed after
implementation, offering flexibility and versatility in hardware
design. In FPGA-in-the-loop testing, a simulation environment
is established, comprising mathematical models, software,
and other components. The hardware functions, such as
controllers and signal processing, are implemented on the
FPGA within this simulation environment. This approach is
particularly advantageous in applications requiring real-time
performance, high-speed data processing, or specialised logic.
The FPGA-in-the-loop concept enables engineers to rapidly
iterate FPGA designs, validate their functionality, and identify
any issues early in the development process. By simulating
the behaviour of the FPGA within a controlled environment,
engineers can assess its performance under various conditions
and refine the design accordingly. By applying simulation
environments and FPGA technology, engineers can increase
performance, reliability, and streamline the development
process [17].

C. Controller-in-the-Loop (CIL).

Control-in-the-loop (CIL) validation is a technique used to
assess the functionality and performance of control systems by
integrating real controller hardware, such as microcontrollers
or PLCs, into a simulated environment. This approach involves
setting up a computer-based simulation that emulates the
behaviour of the system being controlled. The controller is
connected to the simulation, receiving input from the simulated
system and sending control signals back to it, mimicking
real-world interaction. The primary focus of CIL validation
is to evaluate the performance of the controller itself, unlike
hardware-in-the-loop (HIL) testing, which emphasises testing
sensors, actuators, and electronic components. Through this
process, engineers can assess how well the controller responds
to various conditions and scenarios, providing valuable in-
sights into its behaviour and effectiveness in controlling the
system [18].

V. EXPERIMENT

In the traditional old way, where the entire Induction
Machine (selected for this research) is simulated on the
simulation software like MATLAB/ Simulink. The controller
itself is designed using the simulation software which works
on certain calculations that doesn’t give the real-time output,
and no other parallel processing is possible. This method
does not replicate the real hardware where the real Induction
machine is implemented, and it is controlled by real controller
which gives the output in oscilloscope or its application. Due
to lower efficiency, lower response time, lower accuracy, it
was then replaced by the hardware-in-the-loop, FPGA-in-the-
loop, etc concepts. The actual machine still simulates on the
software. This problem is addressed with the help of FPGA.
In this research, the Induction Machine is coded with the
help of VHDL (Very High-Speed Integrated Circuit Hardware
Descriptive language) and then it is implemented on FPGA
board. This machine can be programmed as per the user
requirement.

A. Why FPGA?

An FPGA board, also known as an FPGA development or
evaluation board, is a hardware platform that integrates an
FPGA (Field-Programmable Gate Array) alongside various
essential components like I/O ports, memory, and power
management systems. The FPGA is the core of the board,
a reprogrammable semiconductor device that can be config-
ured to perform a wide range of tasks. The board typically
includes various interfaces for external devices such as sensors,
actuators, and displays, including GPIO pins, serial interfaces
(UART, SPI, I2C), Ethernet, and USB ports. In addition, FPGA
boards contain different types of memory, including on-chip
memory (block RAM), external memory (DDR SDRAM),
and non-volatile memory (Flash). They also include clocking
resources like crystal oscillators, clock generators, and phase-
locked loops (PLLs) to provide stable clock signals for time-
sensitive applications. Power management features, such as
voltage regulators and power monitoring, ensure clean and sta-
ble power. FPGAs are increasingly used in data centres, with
FPGA-based Infrastructure as a Service (IaaS) being a growing
trend, offering faster processing and superior power efficiency
compared to traditional GPUs. Companies like Amazon and
Intel have already adopted FPGAs in their data centres. This
flexibility and efficiency make FPGAs an ideal choice for
designing induction machines in electronic hardware, where
customizability, speed, and power management are critical
[19].

B. Why not DSP Board?

The DSP board or Digital signal processing board specif-
ically designed for processing digital signals in real-time.
The centre of the DSP board is the DSP chip which is a
specialised microprocessor optimised for processing digital
signals efficiently. DSP board typically involves using high-
level programming languages like C/C++ or specialised de-
velopment algorithms provided by DSP manufacturer. DSP
board has features like FPGA, but the main difference lie in
their flexibility and customisation. DSP is implemented using
programming language while the FPGA on the other hand
when implemented using VHDL or Verilog it will work like
a custom build processor, makes it much faster and efficient
than DSP board. With all the pros and cons, FPGA board is
selected. DSP boards are more suitable for acoustical, audio
engineering where the work is directly linked with signals [20].

C. VHDL over Verilog

VHDL (Very High-Speed Integrated Circuit Hardware De-
scription Language) is an HDL language used primarily in
electronic design automation. VHDL designs are composed
of entities, that is the building blocks of digital circuits. Each
entity describes a component such as logic gates, register or
subsystem. They have input and output ports. Each entity
in VHDL is associated with one or more architecture, that
describe the behaviour and functionality of the entity. This
can be described using concurrent or sequential statement.
VHDL supports various data types like integers, float-point



types, pre-defined libraries and packages for processing and
other common tasks. VHDL allows the designer to describe
the behaviour of the digital circuits using techniques such as
process statements, signal assignments, conditional statements,
and loops. It supports structural modelling, which allows
engineers to specify the hierarchical structure of a circuit by
instantiating and connecting lower-level components. VHDL
designs can also be synthesised into hardware configuration for
implementation on FPGA (Field Programmable Gate Array) or
ASIC (Application-Specific Integrated Circuit). Verilog syntax
is more like C-language, it is often bottom-up approach
where the engineers first start by specifying behaviour of
individual component. Both the language different syntax,
design philosophies and communities users. In this research,
we had selected VHDL language [21].

D. Three Phase Input Voltage

Fig. 1. Basic Block of Induction Motor.

The three-phase input voltage is a sinusoidal voltage signal.
The reference voltage is taken as 230 voltage. VHDL code
works with binary data but can be feed with integer data to
get the maximum amplitude. The logic is built by using the
look up table. The look up table works on the logic that a
sine wave is generated between 0 to 2π. The logic is built
to generate a sinewave. If the voltage is taken as 230, then
the maximum amplitude of the look up table will be 230, the
number of bits in the sine wave will decide how visual the sine
wave would be. It is generally taken as 256 bits to generate
a full sine wave without any distortion. The look up table
is generated using the Python language by using the NumPy
library.

Fig. 2. Input (V) Sinewave.

Fig. 3. RTL diagram of input voltage

Fig. 4. Power analysis of input voltage.

E. Stator

The stator parameters are calculated manually using the
motor characteristics:

VL =
√
3× 230 = 398.4V

Number of poles = 4 ⇒ Number of pole pairs = 2

f = 50Hz, IL = 2.33A

Nominal Torque = 3.69Nm

Ns = 3000 rpm, pf = 0.85

Zs = 0.001 201Ω, Ls = 0.012 41H

N = 500 turns

Assuming all mechanical parts and friction losses are neg-
ligible, the magnetomotive force (MMF) is calculated as:

MMF = NI = 500× 2.33 = 1165A turns

Assuming Y Connection The stator will be coded by using
these calculations, the logic is build using python which will
give a phase shift of 120 degree and -120 degree. The lookup
table will then be created with a phase shift, the lookup table
is stored inside the memory, which is called by giving a clock
pulse. The logic is built then run the simulation by giving
the clock and change the option on waveform from digital to
analogue to see the sine wave.

Fig. 5. Y and Delta connection.

The stator will give the MMF, which will be the input to the
rotor. The stator will have a three- phase shift output which
will create the rotating magnetic field. The result of the MMF
is then coded again using python language with a phase shift
of 120 degrees.

The output can be seen as three phase, each having a phase
shift of 120 degrees sine wave, which is the MMF.



Fig. 6. Stator SineWave output.

Fig. 7. RTL diagram of Stator.

F. Rotor

Assuming all mechanical components and friction losses are
equal to zero:

Pin =
√
3× 230× 2.33 = 928.2W

Pmech = Pfr + Pem = 928.2W (since Pfr = 0)

Mechanical torque is given by:

Tem =
Pmech

ωr
=

60 · Pem

2πNr

=
60× 928.2

2π × 1475
= 6.009Nm

Rotor current:

Ir = 191.507mA

Thus, we calculated rotor current, rotor torque and rotor
speed (which was given). The output waveform gives the idea

Fig. 8. Power analysis of Stator.

Fig. 9. Rotor current, Rotor speed, Rotor torque output.

Fig. 10. RTL diagram of Rotor.

of Motor operating characteristic. The calculations are thus
feed into the logic of look-up table which is created with
the help of python. The look-up table is used to produce an
output sine wave. The output is generated with the help of
simulation option inside vivado, the rtl design which represents
the circuit in terms of register and logical operations between
them. Power consumption is helpful in designing as the user
will keep an eye on the chip power consumption and design
as per the requirement.

VI. HOW TO TAKE OUTPUT?

There are several methods to observe the output. First,
using Xilinx Vivado, we ran the simulation and triggered the
output waveform using the clock edge. Second, Chipscope,
a debugging and virtual oscilloscope software, can be used
by connecting the external FPGA board via a JTAG cable to
observe the output [22]. Third, after generating the bitstream
and programming the device, connect the FPGA board to an

Fig. 11. Power analysis of Rotor.



oscilloscope using a USB cable, ensuring the use of a PMOD
interface for external components such as I/O, VGA, or USB

VII. CONCLUSION

This research establishes a strong foundational framework
for simulating an Induction Motor on FPGA. Future work will
aim to replicate the behaviour of an actual induction motor
more precisely. This approach has the potential to significantly
enhance electric vehicle (EV) motor design, offering a more
advanced and cost-efficient testing environment.

In future development, the system will incorporate real-
time analogue input from a three-phase AC voltage source.
This analogue signal will be converted into digital form using
an Analogue-to-Digital Converter (ADC), which will serve as
input to the digital signal processing (DSP) algorithm. This
algorithm can be implemented either using C language within
Xilinx Vivado or by interfacing with a dedicated DSP board.
Communication with the FPGA board will be managed via
interfaces such as JTAG or UART.

If a DSP board is not used, the DSP logic must be
implemented directly in the FPGA by designing a signal
processing algorithm to generate digital integer values. These
values will be stored in ROM and processed using divider
and multiplier circuits. The divider logic will be based on a
32x16-bit architecture, incorporating full adders, multiplexers,
comparators, and subtractors. Similarly, a 16x16-bit multiplier
will be developed using full adders, half adders, multiplexers,
demultiplexers, shifters, and appropriate control logic. These
logic blocks will execute inside loop structures, generating
MagnetoMotive Force (MMF) as output to the rotor.

The rotor will follow a similar process, converting the input
into a lookup table output, which can then be visualised on
an oscilloscope. If a lookup table is implemented, there will
be no need for a digital-to-analogue converter (DAC).

The controller for the system can be implemented in two
ways. The first involves using an external microcontroller (e.g.
Arduino or Raspberry Pi) connected to the FPGA via an
appropriate interface. In this configuration, a Voltage Source
Converter (VSC) must be implemented to handle switching
characteristics, as seen in control methods like Direct Torque
Control (DTC). The second method uses the FPGA as a
controller and processor, eliminating the need for external mi-
crocontrollers. The available I/O ports on the FPGA board can
be assigned to simulate the controller’s switching behaviour.
This research can increase the potential of motor technology
reducing faults and errors significantly. This can further be
executed with machine learning algorithm to detect early fault
in the FPGA based motor which can save time and cost.
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1 import numpy as np
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3 # Parameters
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5 num_points = 256 # Resolution of
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7 # Generate 0 degree base sine wave
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9 for i in range(num_points)

10 ]
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12 # Function to generate shifted sine wave
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13 def generate_shifted(data, degrees):
14 shift_points = int((degrees / 360.0) * len

(data))
15 indices = np.arange(len(data))
16 shifted_indices = (indices - shift_points)

% len(data)
17 return np.interp(indices, shifted_indices,

data)
18

19 # Generate phase-shifted waves
20 sine_minus120 = generate_shifted(sine_0, -120)

.astype(int).tolist() # Phase B
21 sine_plus120 = generate_shifted(sine_0, 120).

astype(int).tolist() # Phase C
22

23 # Output the lookup tables
24 print("Phase A (0 degree):\n", sine_0)
25 print("\nPhase B (-120 degree):\n",

sine_minus120)
26 print("\nPhase C (+120 degree):\n",

sine_plus120)

Listing 1. Python code for generating 90°, 120°, and 240° phase-shifted
lookup tables

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all; --try to use this

library as much as possible.
4

5 entity sine_lut is
6 generic(
7 NUM_POINTS : integer := 32;
8 MAX_AMPLITUDE : integer := 230
9 );

10 port (
11 clk : in std_logic;
12 Va : out integer range 0 to MAX_AMPLITUDE
13 );
14 end sine_lut;
15

16 architecture Behavioral of sine_lut is
17 signal i : integer range 0 to NUM_POINTS :=

0;
18

19 type memory_type is array (0 to NUM_POINTS
-1) of integer range 0 to MAX_AMPLITUDE;

20 -- ROM for storing the sine values generated
by MATLAB.

21 signal sine : memory_type := (
22 115, 137, 159, 179, 196, 211, 221, 228, --

1st quarter
23 230, 228, 221, 211, 196, 179, 159, 137, --

2nd quarter
24 115, 93, 71, 51, 34, 19, 9, 2, --

3rd quarter
25 0, 2, 9, 19, 34, 51, 71, 93 --

4th quarter
26 );
27

28 begin
29 process(clk)
30 begin
31 if rising_edge(clk) then
32 Va <= sine(i);
33 i <= i + 1;
34 if i = NUM_POINTS - 1 then
35 i <= 0;

36 end if;
37 end if;
38 end process;
39 end Behavioral;

Listing 2. VHDL Code for Sine Look-Up Table (sine lut)

1

2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.numeric_std.all;
5 entity stator is
6 generic(
7 NUM_POINTS_120 : integer := 256;
8 MAX_AMPLITUDE_120 : integer := 1165;
9 NUM_POINTS_0 : integer :=256;

10 MAX_AMPLITUDE_0 : integer := 1165;
11 NUM_POINTS_240 : integer := 256;
12 MAX_AMPLITUDE_240 : integer := 1165
13 );
14 port (
15 clk :in std_logic;
16 Ia : out integer range 0 to

MAX_AMPLITUDE_120;
17 Ib : out integer range 0 to

MAX_AMPLITUDE_0;
18 Ic : out integer range 0 to

MAX_AMPLITUDE_240
19 );
20 end stator;
21

22 architecture Behavioral of stator is
23 signal i : integer range 0 to NUM_POINTS_120

:= 0;
24 type memory_type_120 is array (0 to

NUM_POINTS_120-1) of integer range 0 to
25 MAX_AMPLITUDE_120;
26 --ROM for storing the sine values generated by

MATLAB.
27 signal sine_120 : memory_type_120 :=
28 (455, 469, 483, 497, 511, 525, 540, 554, 568,

583, 597, 611, 625, 640, 654, 668, 682,
696, 710, 724, 738, 752, 765, 779, 792,
805, 819, 832, 844, 857, 870, 882, 894,
906, 918, 929, 941, 952, 963, 974, 984,
994, 1004, 1014, 1024, 1033, 1042, 1050,
1059, 1067, 1075, 1082, 1089, 1096, 1103,
1109, 1115, 1121, 1126, 1131, 1136, 1140,
1144, 1148, 1151, 1154, 1156, 1159, 1161,
1162, 1163, 1164, 1165, 1165, 1165, 1164,
1163, 1162, 1161, 1159, 1156, 1154, 1151,
1148, 1144, 1144, 1140, 1136, 1131, 1126,
1121, 1115, 1109, 1103, 1096, 1089, 1082,
1075, 1067, 1059, 1050, 1042, 1033, 1024,
1014, 1004, 994, 984, 974, 963, 952, 941,
929, 918, 906, 894, 882, 870, 857, 844,
832, 819, 805, 792, 779, 765, 752, 738,
724, 710, 696, 682, 668, 654, 640, 625,
611, 597, 583, 568, 554, 540, 525, 511,
497, 483, 469, 455, 441, 427, 413, 400,
386, 373, 360, 346, 333, 321, 308, 295,
283, 271, 259, 247, 236, 224, 213, 202,
191, 181, 171, 161, 151, 141, 132, 123,
115, 106, 98, 90, 83, 76, 69, 62, 56, 50,
44, 39, 34, 29, 25, 21, 17, 14, 11, 9, 6,
4, 3, 2, 1, 0, 0, 1, 2, 3, 4, 6, 9, 11,
14, 17, 21,25, 29, 34, 39, 44, 50, 56, 62,



69, 76, 83, 90, 98, 106, 115, 123, 132,
141, 151, 161, 171, 181, 191, 202, 213,
224, 236, 247, 259, 271, 283, 295, 308,
321, 333, 346, 360, 373, 386, 400, 413,
427, 441);

29

30 signal j : integer range 0 to NUM_POINTS_0 :=
0;

31 type memory_type_0 is array ( 0 to
NUM_POINTS_0 - 1) of integer range 0 to

32 MAX_AMPLITUDE_0;
33 signal sine_0 : memory_type_0 :=
34 (583, 597, 611, 625, 640, 654, 668, 682, 696,

710, 724, 738, 752, 765, 779,
35 792, 805, 819, 832, 844, 857, 870, 882, 894,

906, 918, 929, 941, 952, 963,
36 974, 984, 994, 1004, 1014, 1024, 1033, 1042,

1050, 1059, 1067, 1075, 1082, 1089, 1096,
1103, 1109, 1115, 1121, 1126, 1131, 1136,
1140, 1144, 1148, 1151, 1154, 1156, 1159,
1161, 1162, 1163, 1164, 1165, 1165, 1165,
1164, 1163, 1162, 1161, 1159, 1156, 1154,
1151, 1148, 1144, 1140, 1136, 1131, 1126,
1121, 1115, 1109, 1103, 1096, 1089, 1082,
1075, 1067, 1059, 1050, 1042, 1033, 1024,
1014, 1004, 994, 984, 974, 963, 952, 941,
929, 918, 906,

37 894, 882, 870, 857, 844, 832, 819, 805, 792,
779, 765, 752, 738, 724, 710,

38 696, 682, 668, 654, 640, 625, 611, 597, 583,
568, 554, 540, 525, 511, 497,

39 483, 469, 455, 441, 427, 413, 400, 386, 373,
360, 346, 333, 321, 308, 295,

40 283, 271, 259, 247, 236, 224, 213, 202, 191,
181, 171, 161, 151, 141, 132,

41 123, 115, 106, 98, 90, 83, 76, 69, 62, 56, 50,
44, 39, 34, 29, 25, 21, 17, 14, 11, 9, 6,
4, 3, 2, 1, 0, 0, 0, 1, 2, 3, 4, 6, 9,

11, 14, 17, 21, 25, 29, 34, 39, 44, 50,
56, 62, 69, 76, 83, 90, 98, 106, 115, 123,
132, 141, 151, 161, 171, 181, 191, 202,

213, 224, 236, 247, 259, 271, 283, 295,
308, 321, 333, 346, 360, 373, 386, 400,
413, 427, 441, 455, 469, 483, 497, 511,
525, 540, 554, 568);

42

43 signal k : integer range 0 to NUM_POINTS_240
:= 0;

44 type memory_type_240 is array ( 0 to
NUM_POINTS_240 - 1) of integer range 0 to

45 MAX_AMPLITUDE_240;
46 signal sine_240 : memory_type_240 :=
47 ( 171, 161, 151, 141, 132, 123, 115, 106, 98,

90, 83, 76, 69, 62, 56, 50, 44, 39, 34,
29, 25, 21, 17, 14, 11, 9, 6, 4, 3, 2, 1,
0, 0, 1, 2, 3, 4, 6, 9, 11, 14, 17, 21,
25, 29, 34, 39, 44, 50, 56, 62, 69, 76,
83, 90, 98, 106, 115, 123, 132, 141, 151,
161, 171, 181, 191, 202, 213, 224, 236,
247, 259, 271, 283, 295, 308, 321, 333,
346, 360, 373, 386, 400, 413, 427, 441,
455, 469, 483, 497, 511, 525, 540, 554,
568, 583, 597, 611, 625, 640, 654, 668,
682, 696, 710, 724, 738, 752, 765, 779,
792, 805, 819, 832, 844, 857, 870, 882,
894, 906, 918, 929, 941, 952, 963, 974,
984, 994, 1004, 1014, 1024, 1033, 1042,

1050, 1059, 1067, 1075, 1082, 1089, 1096,
1103, 1109, 1115, 1121, 1126, 1131, 1136,
1140, 1144, 1148, 1151, 1154, 1156, 1159,
1161, 1162, 1163, 1164, 1165, 1165, 1165,
1164, 1163, 1162, 1161, 1159, 1156, 1154,
1151, 1148, 1144, 1144, 1140, 1136, 1131,
1126, 1121, 1115, 1109, 1103, 1096, 1089,
1082, 1075, 1067, 1059, 1050, 1042, 1033,
1024, 1014, 1004, 994, 984, 974, 963,
952,941, 929, 918, 906, 894, 882, 870,
857, 844, 832, 819, 805, 792, 779, 765,
752, 738, 724, 710, 696, 682, 668, 654,
640, 625, 611, 597, 583, 568, 554, 540,
525, 511, 497, 483, 469, 455, 441, 427,
413, 400, 386, 373, 360, 346, 333, 321,
308, 295, 283, 271, 259, 247, 236, 224,
213, 202, 191, 181);

48 begin
49 process(clk)
50 begin
51 --to check the rising edge of the clock

signal
52 if(rising_edge(clk)) then
53 --one by one output the sine

amplitudes in each clock cycle.
54 Ia <= sine_120(i);
55 i <= i+ 1; --increment the index.
56 if(i = NUM_POINTS_120-1) then
57 --reset the index to zero, once we

have output all values in ROM
58 i <= 0;
59 end if;
60 Ib <= sine_0(j);
61 j <= j+1;
62 if ( j = NUM_POINTS_0 - 1) then
63 j <=0;
64 end if;
65 Ic <= sine_240(k);
66 k <= k+1;
67 if (k = NUM_POINTS_240 - 1) then
68 k <= 0;
69 end if;
70 end if;
71 end process;
72 end Behavioral;

Listing 3. VHDL Code for Stator Module

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4

5 entity rotor is
6 generic(
7 NUM_POINTS_Torque : integer := 256;
8 MAX_AMPLITUDE_Torque : integer := 7;
9 NUM_POINTS_rotorS : integer := 256;

10 MAX_AMPLITUDE_rotorS : integer := 1475;
11 NUM_POINTS_current : integer := 256;
12 MAX_AMPLITUDE_current : integer := 3
13 );
14 port(
15 clk : in std_logic;
16 Torque : out integer range 0 to

MAX_AMPLITUDE_Torque;
17 Rotor_Speed : out integer range 0 to

MAX_AMPLITUDE_rotorS;



18 Rotor_current : out integer range 0 to
MAX_AMPLITUDE_current

19 );
20 end rotor;
21

22 architecture Behavioral of rotor is
23 signal i : integer range 0 to

NUM_POINTS_Torque := 0;
24 signal j : integer range 0 to

NUM_POINTS_rotorS := 0;
25 signal k : integer range 0 to

NUM_POINTS_current := 0;
26

27 type memory_type_Torque is array (0 to
NUM_POINTS_Torque-1) of integer range 0
to MAX_AMPLITUDE_Torque;

28 type memory_type_rotorS is array (0 to
NUM_POINTS_rotorS-1) of integer range 0
to MAX_AMPLITUDE_rotorS;

29 type memory_type_current is array (0 to
NUM_POINTS_current-1) of integer range 0
to MAX_AMPLITUDE_current;

30

31 signal sine_Torque : memory_type_Torque := (
32 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,

6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,

7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6,

6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3);

33

34 signal sine_rotorS : memory_type_rotorS := (
35 738, 756, 774, 792, 810, 828, 846, 864,

881, 899, 917, 934, 952, 969, 986,
1003, 1020, 1036, 1053, 1069, 1085,
1101, 1117, 1132, 1147, 1162, 1177,
1191, 1205, 1219, 1233, 1246, 1259,
1272, 1284, 1296, 1308, 1319, 1330,
1340, 1351, 1361, 1370, 1379, 1388,
1396, 1404, 1412, 1419, 1426, 1432,
1438, 1443, 1448, 1453, 1457, 1461,
1464, 1467, 1469, 1471, 1473,
1474,1475, 1475, 1475, 1474, 1473,
1471, 1469, 1467, 1464, 1461, 1457,
1453, 1448, 1443, 1438, 1432, 1426,
1419, 1412, 1404, 1396, 1388, 1379,
1370, 1361, 1351, 1340, 1330, 1319,
1308, 1296, 1284, 1272, 1259, 1246,
1233, 1219, 1205, 1191, 1177, 1162,
1147, 1132, 1117, 1101, 1085, 1069,
1053, 1036, 1020, 1003, 986, 969, 952,
934, 917, 899, 881, 864, 846, 828, 810,

792, 774, 756, 738, 719, 701, 683,
665, 647, 629, 611, 594, 576, 558, 541,
523, 506, 489, 472, 455, 439, 422,
406, 390, 374, 358, 343, 328, 313, 298,
284, 270, 256, 242, 229, 216, 203,
191, 179, 167, 156, 145, 135, 124, 114,
105, 96, 87, 79, 71, 63, 56, 49, 43,
37, 32, 27, 22, 18, 14, 11, 8, 6, 4, 2,
1, 0, 0, 0, 1, 2, 4, 6, 8, 11, 14, 18,
22, 27, 32, 37, 43, 49, 56, 63, 71,
79, 87, 96, 105, 114, 124, 135, 145,
156, 167, 179, 191, 203, 216, 229, 242,
256, 270, 284, 298, 313, 328, 343,
358, 374, 390, 406, 422, 439, 455, 472,
489, 506, 523, 541, 558, 576, 594,
611, 629, 647, 665, 683, 701, 719);

36

37 signal sine_current : memory_type_current :=
(

38 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1);

39

40 begin
41 process(clk)
42 begin
43 if rising_edge(clk) then
44 Torque <= sine_Torque(i);
45 i <= i + 1;
46 if i = NUM_POINTS_Torque - 1 then i <=

0; end if;
47

48 Rotor_Speed <= sine_rotorS(j);
49 j <= j + 1;
50 if j = NUM_POINTS_rotorS - 1 then j <=

0; end if;
51

52 Rotor_current <= sine_current(k);
53 k <= k + 1;
54 if k = NUM_POINTS_current - 1 then k <=

0; end if;
55 end if;
56 end process;
57 end Behavioral;

Listing 4. VHDL Code for Rotor Simulation Module
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